THE POTTER’S WHEEL IN MYCENAEAN GREECE: A RE-ASSESSMENT

INA BERG

ABSTRACT Except for vessels themselves and a small number of kilns, little evidence from mainland Greece has survived that provides clues about how vessels were formed. This lack of evidence is coupled with a scholarly focus on fabrics, shapes and illustrations in catalogues, resulting in a mere cursory treatment of forming techniques. Unfortunately, this lack of engagement with the specifics of pottery manufacture has allowed misconceptions to persist in scholarship. More importantly, the demonstrated association of manufacture with specific facets of identity should encourage us to place forming techniques at the centre of our investigations.

KEYWORDS Potter’s wheel, Mycenaean Greece, identity, wheel-forming techniques, skill

1. INTRODUCTION

‘The girls were crowned with garlands, while the young men had daggers of gold that hung by silver baldric; sometimes they would dance deftly in a ring with merry twinkling feet, as it were a potter sitting at his work and making trial of his wheel to see whether it will run, and sometimes they would go all in line with one another, and much people was gathered joyously about the green’

Homer, Iliad 18.599-601 (transl. Butler 1925)

Analysis of pottery is an important tool in trying to understand how past societies functioned. Mycenaean pottery is no exception. Mario Benzi, whose achievements are being honoured in this Festschrift, has contributed a great deal to our knowledge. Not only has he enhanced scholarly understanding of the pottery on mainland Greece, but he has also attempted to understand the Mycenaeans’ impact further afield, for example, Rhodes, Kos, and Iasos. While the reach of this article is considerably less ambitious, it is hoped that it demonstrates how technological investigations can contribute fruitfully to information gleaned from stylistic features, wares, and shapes.

Much is known about the potter’s wheel in Bronze Age Greece. Thanks to work by Xanthoudides (Xanthoudides 1927) and Evely (Evely 1988; 2000), we have a detailed list of evidence for turning devices, including bats, supports, pivot sockets, and wheelheads. In addition, we have evidence of 15 potential pottery workshops and numerous potting kilns compiled by Streily (Streily 2000). Finally, there is overwhelming evidence of the potter’s wheel in form of the characteristic ‘rilling’ on the interior and exterior of vessels indicating that its first appearance in Greece can be dated to the ‘Lefkandi I’ and Tiryns cultures of the EH IIB and III periods (Wünsche 1977: 27; Rutter 1995). Its application increases over time and continues without a break into the Mycenaean period where almost all of the pottery is assumed to have been wheel-thrown.

Despite this multitude of evidence, it is fair to say that our knowledge is most detailed in relation to Crete and the Cyclades (Berg 2007a; 2007b; 2009; in preparation), while knowledge of production equipment and organisation is surprisingly scarce for mainland Greece itself. Wheelheads of Middle Helladic date have been found on the island of Aigina and at Mycenae and are comparable with the types identified by Evely (Georgiou 1986). Streily believes that this lack of discoveries is most likely due to the use of wood and other organic materials in the construction of potter’s wheels, and the great difficulty in identifying fragmentary wheelheads (Streily 2000: 231). Thus, it is almost certain that a large number of unidentified fragments of potter’s wheels still await discovery in museum collections across Greece. The same sentiment applies to the technical analysis of the pottery itself. A browse through a sample selection of excavation reports and pottery catalogues reveals the general lack of engagement with forming techniques – with most authors never explicitly stating the kinds of forming methods utilized, and a tacit assumption that wheel-throwing was the primary forming method utilized for the manufacture of almost all vessel shapes and wares, especially in the Mycenaean periods (laudable exceptions can be found in the syntheses provided by Lewis 1983 and Spencer 2007). Seeing the emphasis that is placed on pottery studies both in relation to Bronze Age Crete and the Cyclades, the lack of comparable studies for mainland contexts until recently is remarkable and is probably best explained by the development of the discipline and the perceived standardisation and mass production of pottery in the Late Bronze Age. It comes as no surprise to see that those scholars that list forming techniques among their catalogue entries are those concerned with the Middle Helladic periods where greater variety in potting techniques is clearly apparent [Table 1].

Being a pottery specialist with a keen interest on unearthing the chaîne opératoire of potting traditions, I am intrigued by this very specific lacuna in Mycenaean pottery studies. I would argue that scholars, by neglecting forming techniques, are missing out on vital evidence to enhance our understanding of Helladic societies. Three key areas for interpretative opportunities spring to mind:
Table 1: Depth of forming technique reporting in a cross-section of excavation reports and pottery catalogues

<table>
<thead>
<tr>
<th>Publication</th>
<th>Forming technique identified for every vessel</th>
<th>No forming technique identified</th>
<th>Forming technique identified in some cases (assumed wheelmade, unless stated otherwise)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dietz 1980</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rutter 1995</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Zerner 2008</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Akerström 1968</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Akerström 1987</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Alden 2000</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>French 1967</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>French 1969</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Frizell 1986</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MacGillivray 2008</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Moore and Taylor 1999</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mountjoy 1983</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mountjoy 1986</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mountjoy 1999</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mountjoy 2008</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mühlenbruch 2007</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Slenczka 1974</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Stubbings 1947</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Stülpnagel 2000</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wace et al. 1921/22-1922/23</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Catling 2009</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Crouwel 1991</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>French and Taylor 2007</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>French 1965</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>French 1966</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Frizell 1980</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Heath Wiencke 1998</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Immerwahr 1971</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mountjoy 1976</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mylonas Shear 1987</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rutter 1990</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rutter 1993</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Thomas 2005</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Voigtlander 2003</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wardle 1969</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wardle 1973</td>
<td>X</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

1) Potting equipment; 2) Forming techniques; and 3) Potting traditions and identity.

2. POTTING EQUIPMENT

As noted above, there is little available evidence of potting equipment (and indeed facilities) for the Greek mainland. A mere two wheelheads are known - one each from Aigina and Mycenae from Middle Bronze Age contexts (Georgiou 1986). They are complemented by evidence from certain potter’s workshops at Berbati (LH I-IIIA) and Kolonna (EH III and MH II/III). Zygouries (LH IIIB) has clear evidence of pottery magazines, but not of manufacturing activities. Potter’s kilns have come to light at Sindos (EH), Ayios Mamas (EH), Polychrono (EH III), Lerna (MH), Sparta (MH II), Kirrha (MH III), Kolonna (MH III), Plasi (MH?), Eretreia (MH?), Pylos (LH I-IIA), Ayios Kosmas (LH II), Berbati (LH I-IIIA), Aigina (LH IIIA), Thebes (LH IIIB), Asine (LH IIIIB), Tiryns (LH IIIIC), Velestino (LH IIIIC), Aigeira (LH IIIIC) and Dimini (no date) (Streily 2000, with
The Potter’s Wheel in Mycenaean Greece: a reassessment

While not much information is available about the wheelheads from Aigina (which is said to be a Cretan import) and Mycenae, they appear to fall within the type categories established by Evely (Evely 1988, 2000). Similarities in design, diameter and material make it likely that their capabilities were equivalent to wheels from Crete, and experiments carried out in relation to Minoan potter’s wheels are therefore equally valid for mainland ones.

Type 3 wheelheads are the most common type in the Aegean [Figure 1]. They are large (between 20 and 60cm in diameter) and weigh between 2 and 15kg, with a particular preference for weights around 10kg (Evely 1988; 2000). Experimental work carried out by Evely and Politakis at Knossos and Morrison and Park at Mochlos has shown that their relatively lightweight design is incapable of storing the momentum in the same way as heavy stone wheelheads (Evely, Politakis, Morrison and Doug 2008; http://www.spiritofgreece.gr/, Morrison and Park 2007-2008). The experimental vessels that were produced by the Mochlos team were small, simple bowls and cups. At Knossos, ‘speeds sufficient to permit throwing, centering, raising and shaping and finally turning were all readily possible for small and medium-sized pots. But this toil was always easier with the assistance of a second pair of hands. Larger vessels, or those made from heavier clays, were better produced by coils and always needed ‘the second person, and at times a considerable output of energy’ (Evely in: http://www.spiritofgreece.gr/).

The acknowledgement that the reconstructed potter’s wheels were most suitable for wheel-throwing of small or medium-sized vessels indicates that the maximum speed that could be attained is equivalent to other experimental set-ups. Experiments with a Canaanite-Israelite potter’s wheel provide an interesting parallel. Here, a 60cm wide wooden board was placed on top of a stone socket/pivot arrangement; the maximum speed that was attained with this potter’s wheel was 60 rotations per minute (rpm) (Amiran and Shenhav 1984). The same applies to experiments conducted by Powell who reconstructed Egyptian stone pivot potter’s wheels (Powell 1995). While she was able to achieve between 55 and 106rpm with different wheelhead designs, materials and lubricants, the wheels did not store the momentum and slowed down quickly when not pulled/pushed continuously. These limitations only permitted the throwing of small bowls; large vessels would have had to

Fig. 1. Reconstruction of Minoan potters wheel (after Evely 1988; 2000; Morrison and Park 2007/8).
be made in stages. A further experiment was conducted on two EB III basalt wheels from Tel Yarmouth. Using lubricant and an assistant, the wheel was capable of attaining 80rpm and could thus be used to wheel-coil (see below for a detailed discussion and definition) vessels of different shapes and sizes. Wheel-throwing, on the other hand, was only possible for small vessels (less than 1kg of clay) (Roux and de MiroshchDJi 2009).

Ancient illustrations support the reconstructions and experimental designs of these wheels. Egyptian tomb paintings and Classical Greek vase paintings invariably show potter’s wheels with a single large wheelhead located close to the ground, either operated by a potter himself or by an assistant (Scheibler 1983: figs. 67-70; Hope 1981; Arnold and Bourrieu 1993). These potter’s wheels could achieve 60-110rpm and could create enough momentum to throw small vessels, but were insufficient for throwing larger shapes which had to be made in stages. No archaeological or pictorial evidence currently exists of a double- or kick-wheel.

Throwing speeds

It is often stated that wheel-throwing requires speeds of between 100 and 150rpm (e.g. Roux and de MiroshchDJi 2009). However, the speed required for throwing a vessel is not an absolute figure with a clear minimum and maximum. Potters vary in the speeds they use according to their skill level (more experienced potters can work at lower speeds) and the stage of the forming sequence (higher speeds are generally desirable for beginning a vessel, while vessels are generally formed and finished at lower speeds) [Tables 2 and 3]. Likewise, speeds will be different depending on the height and width of a vessel with higher and wider pots/sections requiring lower speeds to shape than smaller and narrower pots/sections (Foster 1959: 62). In sum, speeds regularly vary greatly in the making of any single pot and are frequently considerably lower than the 150rpm cut-off mark. My own experiments with Veronica Newman, an experienced potter, have shown that wheel-throwing is possible at very low speeds. While not exciting or fast, it is nevertheless possible to pull up a vessel at low rotations - such as a 10cm tall cup that was wheel-thrown at speeds as low as 36rpm. In a separate experimental set-up, an experienced potter threw a medium-sized vessel at 60rpm. The task was technically easy, but perceived as ‘boring’ by the potter (Foster 1959: 62). Further experiments with eight potters on kick wheels recorded 80rpm as the top speed with much of the forming done at lower rpm (Foster 1959: 62) [Tables 2 and 3].

Slow vs. fast potter’s wheels

There is a long-standing literature on the potter’s wheel that divides this device into two categories: on one hand, there is the ‘slow’ (or ‘simple’) wheel and on the other there is the ‘fast’ wheel (Orton et al. 1993: 120-125; Rice 1987: 132-135; Rye 1981: 74; Childe 1954). The ‘slow’ wheel is made of wood, stone, or clay and rotates around a fixed axle. It is rotated by the potter, an assistant, or with the help of a stick (in which case it is then called a stick-wheel). It is unlikely to reach speeds greater than 100rpm and is more likely to be in the range of 60-80rpm as its maximum speed. The wheelheads are heavy enough to retain the momentum for a limited time only. Potters working on a slow wheel cannot throw pots with both hands and spin the wheel at the same time – their ability to throw a pot is thereby limited by the momentum that can be created in bursts and the friction that is exerted by the potting process which will slow it down. In many cases, an assistant will have helped in the manufacture. The ‘fast’ wheel is defined as one that runs with continuous rotary motion and can comfortably reach speeds of up to 150rpm. The most common type is the double- or kick-wheel which has a disk on which to shape pots, a heavy flywheel to store the momentum and an axle connecting the two. This means that the potter can throw a pot and regulate the speed at the same time without the need of an assistant. Implicitly, it is assumed that speeds of up to 150rpm are necessary for a potter to wheel-throw a pot and hence the existence of wheel-thrown pots predicates the existence of a ‘fast’ wheel. In contrast, wheel-coiled pots are made on ‘slow’ wheels and therefore imply that the ‘fast’ wheel was not known or utilized. However, this binary opposition is an artificial one.

‘Slow’ and ‘fast’ potter’s wheels have in common that they both use rotary movement in the shaping of vessels. While the maximum speed each device can theoretically achieve is different, they represent a continuum of speeds rather than a dichotomy. As speeds increase, larger and more complex vessels can be wheel-thrown. However, the cut-off line is defined not by the device per se but rather by the skill and expertise of the potter.

Unless we accept that the thousands of wheel-thrown pots that survive from Bronze Age Greece were made by devices of which no evidence whatsoever exists, the currently available evidence indicates that they were most likely made on wheels equivalent to the Minoan ones.

Table 2. Experimentally derived rpm for different manufacturing stages of medium-sized pots (Foster 1959: 62)

<table>
<thead>
<tr>
<th>Task</th>
<th>Potter 1 (expert)</th>
<th>Potter 2 (expert)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pre-centering/opening</td>
<td>140</td>
<td>105</td>
</tr>
<tr>
<td>Opening</td>
<td>90</td>
<td></td>
</tr>
<tr>
<td>Forming</td>
<td>85</td>
<td>60-80</td>
</tr>
<tr>
<td>Finishing rim</td>
<td><85</td>
<td></td>
</tr>
</tbody>
</table>

Table 3. Experimentally derived rpm for different manufacturing stages of small vessels (Foster 1959: 62)

<table>
<thead>
<tr>
<th>Task</th>
<th>Potter 1 (expert)</th>
<th>Potter 2 (intermediate)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Centering</td>
<td>80-90</td>
<td>-</td>
</tr>
<tr>
<td>Forming</td>
<td>60-80</td>
<td>-</td>
</tr>
<tr>
<td>Centering and throwing</td>
<td>-</td>
<td>60-105</td>
</tr>
</tbody>
</table>
Already in 1980, Eiteljorg II argued against the notion of a ‘slow’ and ‘fast’ wheel (Eiteljorg II 1980). He demonstrated that similar wheels were used in Late Mycenaean, Sub-Mycenaean and Protogeometric periods; these wheels are commonly described as ‘simple’ wheels and are the very potter’s wheels depicted also on Archaic and Classical vases. We are therefore looking at one type of wheel only. However, this does not mean that the wheel for which we have evidence required less skill and training than later Roman kick-wheels. As bilateral movements, like wheel-throwing and wheel-coiling, require an extended and dedicated period of learning (commonly put at around 10 years; see Berg 2007b for a detailed discussion), we can assume that potters were highly skilled craftspeople who had full mastery over the potter’s wheel and were able to throw at slow speeds.

3. Forming techniques

As anthropological case studies amply show, the existence of a device does not mean that it is being utilized to its full potential or even for the originally intended purpose – the potential can be extended beyond its originally intended use or it may not be fully exploited. For example, Foster discusses the case of potters in Coyotepec, Mexico (Foster 1959). While most of the potters produced handmade vessels by working with moulds or a slowly rotating support (molde), the most experienced potters in the village were able to spin the support at speeds of up to 90rpm and thus create pots with wheel-thrown necks. In Ticul, Mexico, on the other hand, a layperson gained access to an unused potter’s wheel. She taught herself how to make vessels using the technique of modified coiling, but despite access to a ‘fast’ wheel never actually learned how to throw a complete vessel (Arnold 2008: 242).

As the two case studies show, a great variety of forming techniques exist between purely handmade and fully wheel-thrown that utilize the potter’s wheel to different degrees.

Unfortunately, because of our need for clear category types, archaeologists have a tendency to ignore the less clearly defined techniques and continue to discuss vessels in terms of the binary opposition between handmade and wheel-thrown. In fact, among my sample group of pottery catalogues from Greek mainland sites, I have found only a handful of examples where vessels made of intermediate techniques have been acknowledged (e.g. Lewis 1983; Rutter 1995; Kramer 2004; Spencer 2007 at EH III Lerna and Boeotia; Zerner 2008, at MH Ayios Stephanos; Furumark 1941 and Nordquist 1995, in relation to MH Aiginetan gold mica kitchen jars). Equally important is our ability to actually identify such hybrid vessels – and as a recent experiment has shown – not all pottery specialists are equally familiar with their characteristic features (Berg 2009).

One of the major hybrid forming techniques is wheel-coiling. Wheel-coiling was originally called wheel-shaping. Unlike wheel-throwing where the potter’s wheel runs at speeds sufficiently high to develop rotative kinetic energy (RKE) and allows the potter to pull up and shape the clay, wheel-coiling allows a potter to build up a rough-out with coils. Rotary force is only applied during the thinning and shaping stages. As the wheel is utilized in both techniques, the resulting features are very similar, but not indistinguishable. RKE can be applied at each different stage of the manufacturing process, resulting in four different wheel-coil categories with distinct observable features (Courty and Roux 1995; Roux and Courty 1998; cf. also Rye 1981: 64-65).

As recent work in the Levant and on Crete has shown, the proportion of pots made by wheel-coiling can be substantial: in the Southern Levant, hybrid techniques were used for a long time prior to proper wheel-throwing. Wheel-formed vessels first made their appearance in the Late Chalcolithic, and wheel-coiling is attested from the Early Bronze III period, though it only became widely used in the Middle Bronze II (Ben-Shlomo, Uziel and Maeir 2009; Roux 2003; 2009; Roux and de Miroshedji 2009). I am aware of only one large-scale study that investigates wheel-coiling on the Greek mainland (Spencer 2007): at Lefkandi, wheel-coiling and wheel-throwing co-existed from the very first introduction of the potter’s wheel. However, only wheel-coiling becomes increasingly popular from EH III into MH II and, as potters gain greater and greater expertise, the vessels made became taller. At Asine, wheel-coiling and wheel-throwing co-exist, but are sparingly utilized throughout EH III to MH II. On Crete, wheel-coiling is attested alongside the wheel-throwing technique. At Malia, for example, hybrid techniques have been used for over 40% of all vessels utilizing the wheel in their manufacture. Wheel-coiling is used for the full range of vessels from small to very large (Poursat and Knappett 2005). At Knossos, wheel-coiling was in existence from the Early through to the Late Minoan period, but was primarily used for small to medium-sized vessels (Berg 2009; Knappett 1999; 2004).

While wheel-coiling and wheel-throwing are very different intellectual concepts, both require the same stability in the forearms and two-handed bilateral control and, because the expertise has to be acquired in a specific developmental sequence, both can take up to 10 years to perfect (Roux and Corbetta 1989; Roux 2003). Neither should wheel-coiling be perceived as a less advanced technique than wheel-throwing. Given the low maximum speed and slowing momentum of the Bronze Age potter’s wheel, less experienced potters would have struggled throwing larger vessels. Instead, the wheel-coiling technique allowed the process to be broken down into shorter time fragments by throwing each added coil section separately – such an approach was ideally suited for the particular characteristics of the ‘simple’ wheel (Berg 2010).

With wheel-coiling so prominent in the Near East and Crete, it is surprising that we have only one study that investigates this particular technique in mainland Greece.
As forming techniques have not been a core research focus and distinguishing between the different techniques can be very difficult, it is very likely that wheel-coiled vessels have not been identified as such and have been classified together with their wheel-thrown counterparts. A programme of investigation into forming techniques, especially of the Mycenaean period, should help establish whether it existed and how great a diversity of techniques were utilized on mainland Greece.

4. Identity

The reason that forming techniques are so important not merely as a classificatory tool, but for our interpretation of past societies, is their demonstrated relevance in expressing facets of people’s identities. Gosselain found that ‘certain facets of identity were related consistently to certain stages of the chaîne opératoire’ (Gosselain 2000: 189). In particular, he established that visibility of a manufacturing stage was correlated with specific identities. For example, easily visible techniques (e.g. tempering, secondary forming, decorations) reflect more superficial, situational and temporary facets of identity, often responding to changing social, economic or symbolic pressures. Modifications to techniques only observable by fellow workers (e.g. clay selection, processing, firing) are the result of changes in local or regional identities. Primary forming techniques are the least visible stage in the manufacture. Because they are based on specialized gestures and motor habits acquired through repeated practice in a close-knit learning environment, they are the most resistant to change. Thus, primary forming techniques reflect the most individual and rooted aspects of social identity, including kinship, learning networks, gender and social class (Gosselain 1998; 2000; Gelbert 1999).

Recent work on motor skills and performed body knowledge (also called non-discursive knowledge) has continued to reiterate the basic biomechanical principle behind Gosselain’s ethnographic work. Namely that repeated action of particular bodily performance will ‘result in the embodiment of a suite of physiological actions to the extent that it literally changes the neurology, musculature or skeleton’ (Budden and Sofaer 2009: 208, with detailed discussion and references; Sofaer and Budden, in press). As a result of this repeated action, the act itself becomes part of the maker and forms part of his/her identity. To unlearn a motor skill is almost impossible as it has become part of the maker’s body, though skills can of course be advanced and new skills added to the repertoire. When this is the case, it also often changes the identity of the maker (Gosselain 2008; Budden and Sofaer 2009; Sofaer and Budden, in press). It is because of this insurmountable biomechanical link between forming technique and identity that some specialists are advocating that our current focus on fabric, shapes, and illustrations should be replaced by an in-depth investigation into forming techniques as the very first step in understanding pottery assemblages (Roux 2011).

However, this does not mean that we should ignore the information invested in other aspects of the pottery manufacture. Rutter has highlighted the close link between wheelmade vessels, specific shapes, wares and decorative treatments at Lerna IV (Rutter 1995: when it first came into existence, wheelmade production almost exclusively focused on tankards, kantharoi and bass bowls – all vessels used in visible consumption events. These vessels were primarily produced in fine Gray or Non-Gray Burnished wares – wares that were of high quality and required considerable investment in time to achieve the desired burnishing effect. Finally, grooving was used to exaggerate the rilling produced by the wheel. This pattern clearly hints at the high status and desirability of wheelmade pottery at this time. A consumer’s ability to recognize this forming technique by its characteristic rilling was so important that it led to the application of grooving in exaggeration of the original features. With only a few potters able to produce wheelmade pots, the invention and its resulting products served to distinguish the vessel owner in public or private consumption events.

Thus, investigating forming techniques is not merely a classificatory exercise, but provides valuable information about a maker’s identity and his/her social relationships. Forming techniques, therefore, are at the very core of archaeology by helping us understand how past societies interacted.

5. Conclusions

Drawing on experimental work, ethnographic case studies and the available archaeological evidence, this paper has explored some of the misconceptions in relation to Mycenaean pottery manufacture. It has been argued that only one type of potter’s wheel existed in Mycenaean times, one that was probably capable of achieving around 100rpm. A wide variety of wheel-forming techniques could be executed on this wheel by potters who had developed their expertise over many years. Because the potter becomes the pot, intimate facets of his/her identity are expressed in the manufacturing processes. The more visible aspects of the new wheel technology (i.e. the rilling) were an important means to communicate this technological novelty and the potter’s skill to consumers.

References

Butler, S. 1925. The Iliad of Homer (translation), London.

The Potter’s Wheel in Mycenaean Greece: A Reassessment

Zerner, C. 2008. The Middle Helladic Pottery, with the Middle Helladic Wares from Late Helladic Deposits and the Potters’ Marks. In W.D. Taylor and R. Janko (eds), Ayios Stephanos. Excavations at a Bronze Age and Medieval Settlement in Southern Laconia (British School at Athens Suppl. 44), 177-298, London.